

DOE Southwest Partnership Pilot at SACROC and Claytonville oil field sites 02/16/2006



Authors; Mark H. Holtz, Rebecca C. Smith,
The University of Texas, Austin
Brian McPherson, and Weon Shik Han
New Mexico Institute of Mining and Technology



## DOE Southwest Partnership Phase 2 Pilot Sites

Bureau of Economic Geology



Carbonate Reef CO<sub>2</sub> Sequestration

## Subsurface Site Characterization Work Flow



## Subsurface Site Characterization Work Flow



## Ascertain Regional Geological Setting

- 1. Determine regional geological stratigraphy
- 2. Recognize and correlate large scale chronostratigraphic flooding surfaces
  - markers are represented by high gamma and/or low SP response
- 3. Interpret basin shape and filling style
  - progradational, aggradational, transgressive
- 4. Delineate regional seals
- 5. Identify major fault systems

## West Texas Pennsylvanian Carbonate Reef Stratigraphic Setting

Bureau of Economic Geology

Reservoirs produce from Canyon- Middle Cisco age (290-307 Ma) platform and slope carbonates



## SACROC & Claytonville Location and Regional Geology



## Eastern Shelf Stratigraphy



# Subsurface Site Characterization Work Flow



## Delineating Reservoir Architecture



## Claytonville Top of Structure

Water injection well
Subsea depth to
top of reservoir
(ft)

>3800

3800-3600

3400-3600

3200-3400

3000-3200

<3000



# Lower reservoir composed of shoaling upward cycles





Fractured Mudstone Webb # 3 5,687b ft



Crinoid
Wackystone
Webb # 3
5,684 ft



# Grainstone Webb # 3 5,778 ft



# Breccia Webb # 3 5,726b ft



Breccia
Webb # 2
5,448 ft

Webb # 2 5,448 ft

cm

Large
Vugs
Webb #2
5,448a



# Subsurface Site Characterization Work Flow



## Tasks For Establishing Fluid Flow Trends in a Reservoir

- 1. Ascertain the initial fluid Properties
  - 1. Reservoirs fluid properties
  - 2. Overlying water properties
- 2. Rock-fluid petrophysical properties
- 3. Generate a production time series analysis
- 4. Assess well test data
- 5. Determine flow directions of injected fluids

## Claytonville Production and Development History



#### **Fluid Characteristics**

- Initial GOR: 1200 scf/STB
- Oil API gravity: 42
- Original oil formation volume factor: 1.510
- Bubble point pressure (psi): 1850
- Oil viscosity @ P<sub>b</sub> (cp): 0.35
- Sulfur content of oil: 0.32
- Gas gravity: 1.13
- Connate water salinity (PPM): 59,000

### Claytonville Oil Character



## Gas - Oil Ratio Claytonville Oil Character



### **Groundwater Characterization**

- Compile existing data from eight county study area
- Identify regional variability of existing analyses,
- Additional groundwater sampling (Install 4 new water wells in Claytonville)
  - > major ion, total organic carbon,
  - > stable isotopes of hydrogen (D/H), oxygen (18O/16O), and carbon (13C/12C);
  - ➤ Sr isotopes (reservoir brines and shallow groundwater)
  - > pH, temperature, and alkalinity field measurements,
- Geochemical equilibrium and flowpath modeling to identify groundwater mixing.

## Major and Minor Aquifers and Sample Wells



Mapping water chemistry with stiff diagrams



## Tasks For Establishing Fluid Flow Trends in a Reservoir

- 1. Ascertain the initial fluid Properties
  - 1. Reservoirs fluid properties
  - 2. Overlying water properties
- 2. Rock-fluid petrophysical properties
- 3. Generate a production time series analysis
- 4. Assess well test data
- 5. Determine flow directions of injected fluids

## Porosity-Permeability Character Core Data Well 22-3



# Relationship Between Neutron Wireline and Averaged Core Porosity; Well 22-3



# Transform derived porosity

Top of reservoir



# Subsurface Site Characterization Work Flow



### Inputs into a 3-D Geocelluar Model



#### **SACROC Conceptual model description**

Model describes Cisco and Canyon formations in Pennsylvanian

Bureau of Economic Geology

**Number of grids:** 18 x 35 x 26 = 16380

TOUGH2 simulator has been used Top boundary "No flow" (Wolfcamp shale seal)

**Bottom boundary** "No flow" (Canyon shale seal)

Eastern and western boundaries are constant head boundary

Pressure and temperature are reasonably estimated with hydrostatic and 0.025 m/K gradient assumption

Salinity of brine is 159000 mg/L (=2.72 mol/L)



#### CO<sub>2</sub> Source identification (Injection)

 Among them, 51 well has been active from 1990 to 2000 years

**\*13 million tons** of CO<sub>2</sub> has been injected at 51 wells during past 30 years

#### **Injection well location**



Bureau of Economic Geolog

#### Injection well schedule



#### CO<sub>2</sub> Source identification (Production)

Bureau of Economic Geology

- Among them, 124 well has been active from 1990 to 2000 years
- 6,104,258,074 kg (6 million tons) of CO<sub>2</sub> has been produced at 119 wells during past 30 years
   Production well location



#### **Production well schedule**



#### Estimation of spatial distribution of CO<sub>2</sub>



## Estimation of spatial distribution of CO<sub>2</sub> Dissolved CO<sub>2</sub> distribution



